

Environmental Product Declaration

Global GreenTagEPD Program: Compliant to EN15804+A2 2019

Natralis[™] Homogeneous Sheet Flooring Distributed by AHF Products 3840 Hempland Road, Mountville, PA 17554, USA

ArmstrongFlooring[®]

Armstrong Flooring

Natralis[™] Homogeneous Sheet Flooring

Mandatory Disclos	ures					
EPD type	Cradle to grave A1 to	C4 + D				
EPD Number	ATX AS03 2022EP					
Issue Date	Day 17 th May 2022					
Valid Until	Day 17 th May 2027					
Demonstration o	f Verification					
PCR		A2 2019 serves as core Pro r Coverings also applies [2]	oduct Category Rules (PCR) [1]. Sub]			
	Deluyn Jones 2807 2023	LCA & EPD developer l	Delwyn Jones, Director Ecquate			
☑ Internal	28 07 2023	LCA Reviewed by Dires	shni Naiker, Evah Associate			
	02 08 2023	➢ EPD Reviewed by David	Baggs, Global GreenTag Pty Ltd			
	Third Party Verifier ^a Mathilde Vlieg, MalaikaLCT					
☑ External	a. Independent external verification of the declaration and data, mandatory for business-to-consumer communication according to ISO 14025:2010 [3].					
Communication	This EPD discloses potential environmental outcomes compliant with EN 15804 for business-to-business communication.					
Comparability	Different program EP		parable if not EN15804 compliant. . Comparability is further dependent used.			
Reliability		ative expressions that do of thresholds, safety margi	o not predict impacts on category ins or risks.			
Owner		erty of the declared manufa				
Explanations		information is available n1@globalgreentag.com [3	at info@globalgreentag.com or by].			
EPD Program Op	berator LCA	A and EPD Producer	Declaration Owner			
Global GreenTag Pty Ltd PO Box 311 Cannon Hill QLD 4170 Australia Phone: +61 (0)7 33 999 686		uate Pty Ltd Box 123 Thirroul N 2515 Australia ne: +61 (0)7 5545 0998 ://www.evah.com.au	Distributor: AHF Products 3840 Hempland Rd P.O. Box 566 Mountville, PA 17554, USA Phone +1.866.243.2726 www.armstrongflooring.com			
GLOB, GREEN		Ecquate	Armstrong Flooring [®]			

Ecquate

building ecopositive

INTERNATIONAL

ArmstrongFlooring⁻

Natralis[™] Homogeneous Sheet Flooring

Program Description																				
EPD type	Cr	Cradle to grave scope EPD as defined by EN 15804 [1]																		
System boundary		The system boundary with nature includes resource acquisition, processing, manufacture, transport, installation, use to end of life plus waste arising.																		
Information modules		Figure 1 depicts all modules assessed including some with calculated zero results. Any module not declared (MND) does not indicate a zero result.																		
Information					Build	ding	Life	e Cy	cle /	Asse	essme	ent					\$	Sup	plem	nentary
Model	A	Actual Scenarios Potential							ntial											
Stages					Building				End-of-Life			e	Benefit & load beyond system							
	Pi	rodu	ct	Con	struct	Fabric O		Opera	ation											
Modules	A1	A2	A3	A4	A5	B	B2	B3	B4	B5	BG	Β7	ö	C2	C3	C4		5	D2	D3
Mandatory (M) & Optional (O) Unit Operations	Resources	Transport	Manufacture	Transport	Construct	Use	Maintain	Repair	Replace	Refurbish	Energy use	Water use	Demolish	Transport	Process Waste	Disposal		Reuse	Recovery	Recycling
Cradle to	R		Š		0		_			ш	ū	5							ш	-
Gate+ Options (O)	Mon	dato	m /	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
Grave	Iviali	ualo	ıy	М	М	М	М	М	М	М	М	М	М	Μ	М	М		Μ	М	0
Scope depiction								Fig	gure	e 1 L	ife C	ycle	M	วdเ	ıles					
Stages included	A1-	A1-3 A4-5, B1-5, C1-4 & D1.																		
Stages excluded	No	o stage was excluded. Stages B1, B4 to B7, C3, D2, D3 and D4 have no flows.																		

Data Sources and Quality

Primary Data	Data was collected from primary sources, 2019 to 2022, including the manufacturer, suppliers' standards, locations, logistics, market share, technology and management system in accordance with EN ISO 14044:2006, 4.3.2, [4]. All are physically biologically or chemically allocated. No flows are economically allocated.								
Variability Range	Significant differen	Significant differences of average LCIA results are shown.							
Data cut-off & quality criteria		Complies with EN 15804 [1]. The LCA used background data aged <10 years and quality parameters tabled below.							
Background	Data Quality	Data Quality Parameters and Uncertainty (U)							
Correlation	Metric σg	U ±0.01	U ±0.05	U ±0.10	U ±0.20				
Reliability	Reporting	Site Audit	Expert verify	Region	Sector				
	Sample	>66% trend	>25% trend	>10% batch	>5% batch				
Completion	Including	>50%	>25%	>10%	>5%				
Completion	Cut-off	0.01%w/w	0.05%w/w	0.1%w/w	0.5%w/w				
Tomporel	Data Age	<3 years	≤5 years	<7.5 years	<10 years				
Temporal	Duration	>3 years	<3 years	<2 years	1 year				
Technology	Typology	Actual	Comparable	In Class	Convention				
Geography	Focus	Process	Line	Plant	Corporate				
	Range	Continent	Nation	Plant	Line				
	Representation	Representation Global, Africa, America, Europe, Pacific Rim							

Global GreenTag^{Cert™} EPD Program

Compliant to EN 15804+A2, ISO 14025 ISO 21930

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

Product Information	
Range Names in full	Commercial Homogeneous Sheet Flooring
Product Name & Code	Armstrong Flooring [™] Natralis [™]
Manufacturer	Braeside Mills Operations Pty Ltd Trading As Armstrong Flooring
Factory warranty	10 years Commercial
Manufacturer address	29-39 Mills Road Braeside Victoria Australia 3195
Site representation	29-39 Mills Road Braeside Victoria Australia 3195
Application	Coated and reinforced floor covering
Function in Building	Interior dry-area resilient floor covering
Specification	Homogeneous mineral-filled polyvinyl chloride sheet
Declared unit	1 kg=0.3333 m ² of Armstrong uncoated homogeneous floor covering
Functional unit	20 years interior use per kilogram of declared 3.0 kg/m ² floor covering
Design Application	Hospital, Aged Care, Health Care, Education, Hospitality, Mercantile and Light Industrial sector buildings.
Practices Reference	https://www.armstrongflooring.com/commercial/en-us/products/hom/natralis.html
Installation Procedure	https://www.armstrongflooring.com/cdn/afi/pdbupimages-flr/Commercial-Sheet-Installation- Instructions.pdf
Practicality	Full depth replenishing polyurethane. Protective polyurethane finish reduces maintenance and increases scuff resistance.
Durability	Excellent dent and gouge resistance. Embossed surface texture and high- visual colour chip masks dirt and wear marking in high traffic areas.

Product Functional & Technical Performance

This section provides manufacturer specifications, additional information and datapoints required to calculate assessment results factoring different mass and periods.

Service	Standards	Parameters	Standard Conformance	
Туре		Resilient floor covering	Homogeneous sheet vinyl	
Performance		Homogeneous floor covering		
Binder content	ASTM F1913	Minimum Percentage	50%	
Use area class		Light Commercial & Commercial	\checkmark	
Lifetime [5 & 6]	ISO 15686	Reference Service Life	20 years	
Dimensions	ISO 24341	Roll Width*Length	6.0*52.5 feet	
Dimensions	ASTM F386	Overall thickness	2.0 mm	
Durability	ASTM D4060	Abrasion resistance	72,900 cycles	
		Dry, Neolite	0.92	
Slip resistance	ASTM D2047	Dry, Leather	0.75	
Emissions	CDPH v1.2-2017	Volatile Organic Compound	FloorScore®	
Smoke		Flaming	≤450	
Зтоке	ASTM E662	Non-Flaming	≤450	
Fire	ASTM E648	Critical Radiant Flux	Class I	
Ourfees Durrit		Flame Spread Rating (FSR)	With S-995 Adhesive: 25	
Surface Burning Characteristics	CAN/ULC S102.2	Smoke Developed Class (SDC)	With S-995 Adhesive: 70	

ArmstrongFlooring⁻

Natralis[™] Homogeneous Sheet Flooring

Product Functional & Technical Performance

This section summarises factory components, functions, source nation and % mass share. In the product content listed below the % mass ±5% range has a confidence interval that is 90% certain to contain true population means at any time.

Listing such 90±5% certainty allows for intellectual property protection whilst ensuring fullest possible transparency. It also reflects normal component resource acquisition, supply chain, sedimentation, seasonality, manufacturing and product colourways variation over this EPD's 5-year validity period

Function	Component	Cradle	Natralis			
Binder	Polyvinyl Chloride	Taiwan	>40<44			
Filler	Limestone	Australia	>38<43			
Plasticiser	Dioctyl Terephthalate	Mainland China	>10<13			
Stabiliser	Calcium Zinc Soap	Australia	>1<3			
Coating	Polyurethane	Australia	>1<2			
White pigment	Titanium dioxide	Mainland China	>1<2			
Stabiliser & plasticiser	Epoxidised Soybean Oil	Taiwan	>0.5<1			
Binder	Post Industrial Scrap PVC	Australia	>0.5<1			
Stabiliser	Diphenyloctyl Phosphite	Taiwan	<0.5			
Modifier	Polyurethane	Australia	<0.5			
Colour	Pigments	Global	<0.1			
Other Components	Matte, cross-linking, coupling, levelling & coating components	Europe & Taiwan	<0.03 ea			
Packing						
Carton & core	Cardboard 90% PCR	Australia	0.09			
Wrap, spacer	Card & paper 90% PCR	Australia	0.83			
Tape & liner	Polymer 55% PCR	Australia	0.05			
Spools	Plastic	Australia	0.04			
Tape & label	Paper	Australia	0.04			
Completeness	_					
No Chemicals of Very High Concern	Contains no substances in the European Chemicals Agency "Authorised of Candidate Lists of Substances of Very High Concern (SVHCs)".					
A1-A3 Stage inclusions	Operations include all known raw material acquisition, refining and processing plus scrap or material reuse from prior systems; electricity generated from all sources with extraction, refining & transport plus secondary fuel energy and recovery processes. Also, transport to factory gates; manufacture of inputs, ancillary material, manufacture and formation at end					

product, packaging, maintenance, replacement plus flows leaving at end-

of-waste boundary as well as fates of all flows at end of life.

Base material content range (%w/w)

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

System Analysis Scope and Boundaries

Stages A1 to 3 model actual operations. Stage A4 to C4 are modelled as scenarios. Typical scenarios are assumed to model forecast unit operations as described in the next section.

Figure 2. shows modelled processes in a cradle to grave system boundary to end of life fates beyond the boundary but space limits showing some operations to reuse, recycling or landfill grave.

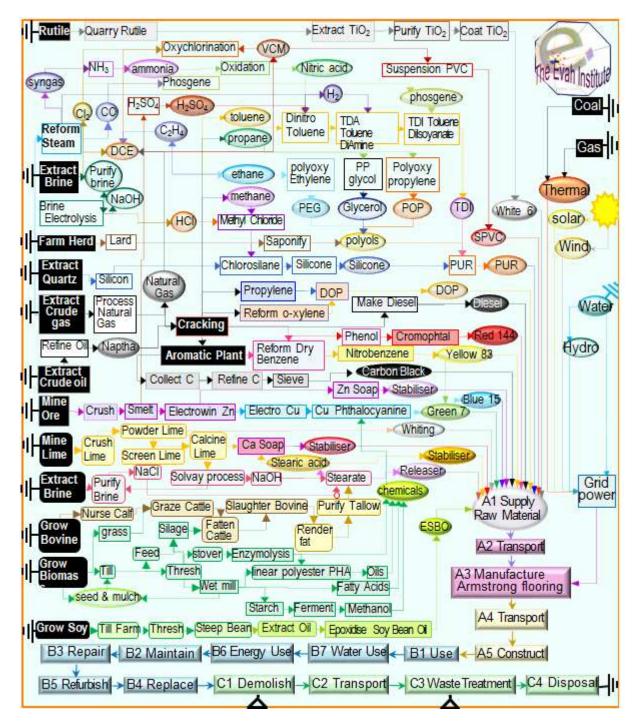


Figure 2. Product Process Flow Chart

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

Scenarios for Modules/Functional Unit

Stages A1 to A3 model actual operations. This section defines modelling scenarios for stage A4 to D3. Stages B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy, B7 Building Operating Water, C3 Waste Treatment and D2 Recovery and D3 Recycling have zero inputs and outputs.

	Phase	Operation	Type specified	Amount	Type specified	Amount
		Transport to Site	2t to 5t vans	22 km	85% Capacity	Full back load
	A4 Transport	Long distance road	25t semi-trailer	600km	85% Capacity	Full back load
		Continental freight rail	Diesel train	600km	85% Capacity	Full back load
		Container shipping	Factory to CBD	1,200km	85% Capacity	Full back load
		Volume capacity (<1 ≥1)	Utilisation factor	1	Uncompressed	Un-nested
		Ancillaries	Adhesive	0.025kg	Edge trim	0.0001kg
		Packing	Cardboard	0.005kg	Polymer	0.00001kg
	AJ	Water & Energy	Town water	0.0m ³	Energy type	0.0MJ
	Construct	Waste on site	Trims	0.05kg	All packaging	As shown kg
		Scrap collection & route	No recycling	0.0kg	Energy recovery	0.0kg
		Emissions	Nil to air & water	0.0kg	All from landfill	In LCA report
		Maker's specification	URL Declared	Specified	Clean cycle	Weekly
	B2	Ancillaries	Scrubber pads	Negligible	Detergent	0.007kgpa
	Maintain	Washing net water use	Town water	1.95kgpa	To drain 1.90	kgpa
		Vacuum cleaner energy	Once weekly	1.62MJpa	Power mix	Local AU mean
		Typical practice	Damaged parts	0.05kg	Worn parts	Same 5%
	B3 Repair	Maker's specification	As per website	Specified	Freight to site	As A5
		Energy input & source	No excess	0.0MJpa	Packaging	As A5
	C1	Typical practice	Take up worn	0.40kg	Collection	Separate
	Demolish	Collection process	In site waste	0.40kg	Separate to reuse	0.0kg
	C2 Transport	Typical practice	25t truck road	50km	85% capacity	No back load
		Typical practice	Product specific	0.40kg	Collect separately	0.40kg
	C4 Dispose	Typical practice	Worn to landfill	40%	All emissions	mass share
		Recovery system	No recycling	0.0kg	Not for energy	0.0kg
	D1 Reuse	Typical practice	Retain low wear	60%	Reuse in place	0.60kg

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

Global warming forcing Climate Change	Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening " <i>climate emergency</i> ".
Ozone layer depletion	Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons, chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.
Acidification	Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of " <i>acid rain</i> " are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning <i>fossil fuels</i> polluting rain and snow precipitation world-wide.
Eutrophication of terrestrial, freshwater and marine life	Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH ₄) and phosphorus (P, PO ₄ ³⁻) in rain run-off over-fertilised land catchments.
Photochemical ozone creation	Tropospheric photochemical ozone, called " <i>summer smog</i> " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.
Depletion of minerals, metals & water	Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement " <i>extinction rebellion</i> " calls on adults to secure climate, reserves and biodiversity for current and future generations.
Depletion of fossil fuel reserves	Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching " <i>peak oil</i> " acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.

ArmstrongFlooring⁻

Natralis[™] Homogeneous Sheet Flooring

Glossary of Terms and Units

Impact Potential, Inventory Input and Inventory output, acronyms, method and unit are defined below.

Impact Potentials	Acronym	Description of Methods	Units
Climate Change biogenic	GWP bio	GWP biogenic [7]	kg CO _{2eq}
Climate Change land use	GWP luluc	GWP land use & change [7]	kg CO _{2eq}
Climate Change fossil	GWP ff	GWP fossil fuels [7]	kg CO _{2eq}
Climate Change total	GWP	Global Warming Potential [7]	kg CO _{2eq} .
Stratospheric Ozone Depletion	ODP	Stratospheric Ozone Loss [8]	kg CFC _{11eq}
Photochemical Ozone Creation	POCP	Summer Smog [9]	kg NMOC _{eq}
Acidification Potential	AP	Accumulated Exceedance [10]	mol H⁺ _{eq}
Eutrophication Freshwater	EP fresh	Excess nutrients freshwater [11]	kg P _{eq}
Eutrophication Marine	EP marine	Excess marine nutrients [11]	kg N _{eq}
Eutrophication Terrestrial	EP land	Excess terrestrial nutrients [11]	mol N _{eq}
Mineral & Metal Depletion	ADP min	Abiotic depletion minerals [12]	kg Sb _{eq}
Fossil Fuel Depletion	ADP fossil	Abiotic depletion fossil fuel [13]	MJ ncv
Water Depletion	WDP	Water Deprivation Scarcity [14,15]	m^3 WDP eq
Fresh Water Net	FW	Lake, river, well & town water	m ³
Secondary Material	SM	Post-consumer recycled (PCR)	kg
Renewable Secondary Fuel	RSF	PCR biomass burnt	MJ ncv
Renewable Primary Feedstock	PERM	Biomass retained material	MJ _{ncv}
Renewable Primary Energy Not Matter	PERE	Biomass fuels burnt	MJ ncv
Renewable Primary Energy Total	PERT	Biomass burnt + retained	MJ ncv
Unrenewable Secondary Fuel	NRSF	PCR fossil-fuels burnt	MJ ncv
Unrenewable Primary Feedstock	PENRM	Fossil feedstock retained	MJ ncv
Unrenewable Primary Energy Not Matter	PENRE	fossil-fuel used or burnt	MJ _{ncv}
Unrenewable Primary Energy Total	PENRT	Fossil feedstock & fuel use	MJ ncv
Hazardous Waste Disposed	HWD	Processed to contain hazard risks	kg
Non-hazardous Waste Disposed	NHWD	Municipal landfill facility waste	kg
Radioactive Waste Disposed	RWD	Mostly nuclear power plant waste	kg
Components For Reuse	CRU	Production scrap for reuse as is	kg
Material For Recycling	MFR	Production scrap for recycling	kg
Material For Energy Recovery	MER	Production scrap for use as fuel	kg
Exported Energy Electrical	EEE	Common in buildings not products	MJ nev
Exported Energy Thermal	EET	Common in buildings not products	MJ nev

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

Results of Modules A and B

Table 1 shows results A1 to A5/functional unit.

Table 1 Results of A1 to A5/Functional Unit			
Impact Potential	A1-3	A4	A5
Climate Change GWP biogenic	-0.05	-1.1E-06	-0.012
Climate Change GWP luluc	4.9E-06	1.7E-09	6.0E-06
Climate Change GWP fossil	3.63	0.02	0.30
Climate Change GWP total	3.58	0.02	0.29
Ozone Depletion Potential	1.4E-08	1.7E-13	1.2E-08
Photochemical Ozone Potential	2.1E-02	1.2E-04	1.9E-03
Acidification Potential	9.5E-03	1.2E-05	8.3E-04
Eutrophication freshwater	1.9E-06	5.6E-10	2.3E-05
Eutrophication marine	1.8E-03	2.3E-06	1.7E-04
Eutrophication terrestrial	1.5E-02	7.9E-06	1.1E-03
Mineral & Metal Depletion	2.88	2.3E-02	0.26
Fossil Fuel Depletion	1.6E-04	7.2E-06	4.6E-05
Fresh Water Net	59.4	1.8E-05	3.2E-02
Secondary Material	0.14	2.9E-06	0.025
Renewable Secondary Fuel	0.25	6.75E-06	0.011
Renewable Primary Energy Not Material	0.69	3.0E-04	0.200
Renewable Primary Feedstock	0.43	2.4E-03	0.034
Renewable Primary Energy Total	1.32	2.7E-03	0.0234
Unrenewable Secondary Fuel	0.17	7.4E-04	1.9E-04
Unrenewable Primary Energy Not Material	15.04	0.11	3.76
Unrenewable Primary Material	48.01	0.19	1.63
Unrenewable Primary Energy Total	63.05	0.30	5.38
Hazardous Waste Disposed	7.6E-03	3.7E-05	8.9E-04
Non-hazardous Waste Disposed	0.14	3.1E-04	5.2E-02
Radioactive Waste Disposed	1.4E-16	1.1E-31	4.5E-17
Components For Reuse	8.2E-03	4.4E-3	2.6E-04
Material For Recycling	5.4E-02	6.4E-06	3.2E-02
Material For Energy Recovery	7.7E-04	2.3E-07	2.7E-04
Exported Energy Electrical	0	0	0
Exported Energy Thermal	0	0	0

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

Results of B Modules

Table 2 shows results B1 to B7/functional unit. All flows were calculated as zero for stages B1, B4 to B7

Table 2 Results B1 to B7/Functional Unit				
Impact Potential	B1	B2	B3	B4-7
Climate Change GWP biogenic	0	-0.091	-4.0E-03	0
Climate Change GWP luluc	0	7.33E-06	4.21E-07	0
Climate Change GWP fossil	0	0.62	0.23	0
Climate Change GWP total	0	0.53	0.23	0
Ozone Depletion Potential	0	3.0E-09	5.9E-09	0
Photochemical Ozone Potential	0	3.3E-03	1.4E-03	0
Acidification Potential	0	1.4E-03	6.5E-04	0
Eutrophication freshwater	0	5.9E-07	2.2E-05	0
Eutrophication marine	0	2.4E-04	1.3E-04	0
Eutrophication terrestrial	0	1.8E-03	9.9E-04	0
Mineral & Metal Depletion	0	0.53	0.19	0
Fossil Fuel Depletion	0	2.9E-04	2.2E-05	0
Fresh Water Net	0	6.1E-02	1.7E-02	0
Secondary Material	0	0.044	0.014	0
Renewable Secondary Fuel	0	0.20	0.006	0
Renewable Primary Energy Not Material	0	0.41	0.071	0
Renewable Primary Feedstock	0	1.00	0.027	0
Renewable Primary Energy Total	0	1.41	0.098	0
Unrenewable Secondary Fuel	0	0.039	3.0E-03	0
Unrenewable Primary Energy Not Material	0	7.74	2.98	0
Unrenewable Primary Material	0	1.57	1.03	0
Unrenewable Primary Energy Total	0	9.31	4.01	0
Hazardous Waste Disposed	0	9.1E-04	6.2E-04	0
Non-hazardous Waste Disposed	0	9.9E-02	4.0E-02	0
Radioactive Waste Disposed	0	2.5E-17	2.3E-17	0
Components For Reuse	0	1.7E-3	6.8E-3	0
Material For Recycling	0	7.1E-02	3.4E-03	0
Material For Energy Recovery	0	3.2E-05	1.2E-04	0
Exported Energy Electrical	0	0	0	0
Exported Energy Thermal	0	0	0	0

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

Results of C Modules

Table 3 shows results C1 to C4/functional unit. All flows were calculated as zero for stages C3.

Table 3 Results Module C1, C2 and C4 /Functio	nal Unit			
Impact Potential	C1	C2	C3	C4
Climate Change GWP biogenic	-2.1E-04	-8.8E-07	0	1.2E-03
Climate Change GWP luluc	2.0E-08	1.4E-09	0	3.5E-03
Climate Change GWP fossil	1.8E-03	6.1E-03	0	7.1E-03
Climate Change GWP total	1.6E-03	6.1E-03	0	1.1E-02
Ozone Depletion Potential	6.8E-12	1.1E-13	0	7.1E-08
Photochemical Ozone Potential	9.6E-06	6.0E-05	0	6.1E-04
Acidification Potential	4.1E-06	5.1E-06	0	1.1E-03
Eutrophication freshwater	1.4E-09	3.1E-10	0	3.1E-04
Eutrophication marine	7.4E-07	9.5E-07	0	2.6E-05
Eutrophication terrestrial	5.4E-06	3.4E-06	0	4.2E-05
Mineral & Metal Depletion	1.5E-03	7.5E-03	0	0
Fossil Fuel Depletion	6.6E-07	4.0E-06	0	0
Fresh Water Net	1.4E-04	8.7E-06	0	0
Secondary Material	4.1E-04	2.2E-06	0	0
Renewable Secondary Fuel	4.71E-04	5.12E-06	0	0
Renewable Primary Energy Not Material	1.2E-03	2.0E-04	0	0
Renewable Primary Feedstock	2.3E-03	1.6E-03	0	0
Renewable Primary Energy Total	3.5E-03	1.8E-03	0	0
Unrenewable Secondary Fuel	8.9E-05	4.8E-04	0	0
Unrenewable Primary Energy Not Material	2.2E-02	6.4E-02	0	0
Unrenewable Primary Material	3.7E-03	3.7E-02	0	0
Unrenewable Primary Energy Total	2.6E-02	1.0E-01	0	0
Hazardous Waste Disposed	2.1E-06	1.2E-05	0	0
Non-hazardous Waste Disposed	2.3E-04	9.7E-05	0	4.0E-01
Radioactive Waste Disposed	5.8E-20	8.5E-32	0	0
Components For Reuse	3.8E-3	3.5E-3	0	0
Material For Recycling	1.7E-04	4.6E-06	0	0
Material For Energy Recovery	7.5E-08	1.5E-07	0	0
Exported Energy Electrical	0	0	0	0
Exported Energy Thermal	0	0	0	0

ArmstrongFlooring⁻

Natralis[™] Homogeneous Sheet Flooring

Results of D Modules Beyond System Boundaries

Table 4 shows D1 to D4 results/functional unit. Negative results show product reuse over full building life. All flows were calculated as zero for stages D2, D3 and D4

Table 4 Results D1 /Functional Unit **Impact Potential D1 D2 D3 D4 Climate Change GWP biogenic** -3.0E-02 0 0 0 **Climate Change GWP luluc** -2.2 0 0 0 **Climate Change GWP fossil** -2.9E-06 0 0 0 0 **Climate Change GWP total** -2.2 0 0 **Ozone Depletion Potential** -8.3E-09 0 0 0 **Photochemical Ozone Potential** -1.2E-02 0 0 0 **Acidification Potential** -5.7E-03 0 0 0 **Eutrophication freshwater** -1.2E-06 0 0 0 -1.1E-03 0 0 0 **Eutrophication marine Eutrophication terrestrial** -9.2E-03 0 0 0 **Mineral & Metal Depletion** -9.4E-05 0 0 0 **Fossil Fuel Depletion** -1.7 0 0 0 **Fresh Water Net** -3.6 0 0 0 Secondary Material -8.4E-02 0 0 0 **Renewable Secondary Fuel** -0.15 0 0 0 -0.41 0 0 0 **Renewable Primary Energy Feedstock Renewable Primary Energy Not Material** -0.26 0 0 0 **Renewable Primary Energy Total** -0.79 0 0 0 **Unrenewable Secondary Fuel** -0.10 0 0 0 **Unrenewable Primary Energy Not Material** -9.0 0 0 0 -29 0 **Unrenewable Primary Energy Feedstock** 0 0 **Unrenewable Primary Energy Total** -38 0 0 0 Hazardous Waste Disposed -4.6E-03 0 0 0 0 0 0 Non-hazardous Waste Disposed -8.4E-02 **Radioactive Waste Disposed** -8.5E-17 0 0 0 **Components For Reuse** -3.4E-03 0 0 0 **Material For Recycling** -3.2E-02 0 0 0 -4.6E-04 0 0 Material For Energy Recovery 0 **Exported Energy Electrical** 0 0 0 0 0 0 **Exported Energy Thermal** 0 0

ArmstrongFlooring[®]

Natralis[™] Homogeneous Sheet Flooring

Interpretation

This section interprets the results. Table 5 lists cradle to gate component share % mass versus Global Warming Potential (GWP kg CO_{2e}) and gross embodied energy (EE) % /kg product results.

Figure 3 charts cradle to gate mass % versus gross % share EE/kg results A1 to A3. It shows highest EE sensitivity PVC binder content and least EE sensitive limestone (CaCO₃) filler content.

Figure 4 charts GWP versus Abiotic Depletion of Fossil Fuel (ADPFF)/kg A1 to A3. It shows most GWP emissions from PVC binder second is electricity usage and third is DOTP plasticiser.

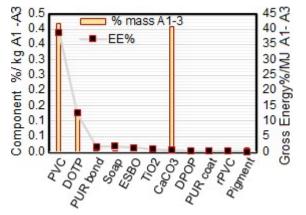
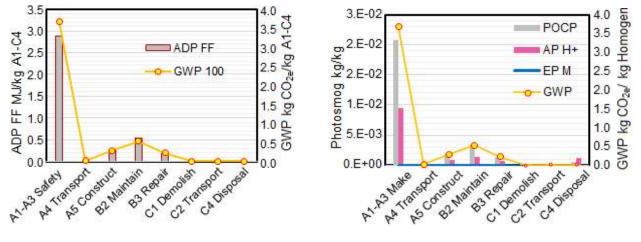



Figure 3 Component & EE % share//kg A1-A3

Figure 5 charts GWP versus ADP FF/kg product results A1 to C4. Figure 6 charts Photochemical Smog (POCP), Acidification (AP H+), Marine Eutrophication (EPM) and GWP/kg product results A1 to C4. Both charts show product manufacture A1 to A3 highest and B2 maintenance (cleaning) second highest. A3 Construct (Install) and B3 Repair are third but other stages have no significance.

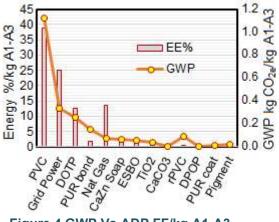


Figure 5 GWP Vs ADP FF /kg A1 to C4

Figure 6 GWP, POCP, AP & EPM/kg A1 to C4

Module D Beyond System Boundary results show typical D1 Reuse for 40 more years of 60% of least-worn product in low traffic bedroom, office and storage areas. The same new flooring replacing only 40% of the floor area in high traffic areas avoids a significant majority of impacts over a 60-year building life. Significant results for phases A4 to C4 remain unchanged for replacement flooring over the building life.

Table 5 Component & EE% Vs GWP/kg			
Component	Mass%	EE%	GWP
PVC	<45	38.0	0.99
DOTP	<15	12.3	0.26
PUR	<5	3.1	0.14
CaZn Soap	<3	1.8	0.07
ESBO	<1	1.4	0.06
TiO ₂	<2	0.9	0.03
DPOP	<0.5	0.3	0.01
CaCO ₃	<45	0.6	0.00

Figure 4 GWP Vs ADP FF/kg A1-A3

ArmstrongFlooring

Natralis[™] Homogeneous Sheet Flooring

References

- [1] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations -Core rules for the product category of construction products.
- [2] GreenTag[™] 2021 EPD Program, Product Category Rules https://www.globalgreentag.com/EPD.
- [3] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations -Principles and procedures.
- [4] ISO14044:2006 Environmental management LCA Requirements and guidelines.
- [5] ISO 15686-2:2012 Buildings and constructed assets Service life planning Part 2: Service life prediction procedures.
- [6] ISO 15686-8:2008 Buildings and constructed assets Service-life planning Part 8: Reference service life and service-life estimation.
- [7] IPCC 2013, Global Warming Potential 100-year, IPCC Fifth Assessment Report Climate Change.
- [8] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.
- [9] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in LCIA, Atmos Environ 42(3):441-453, LOTOS-EUROS. DOI: 10.1016/j.atmosenv.2007.09.072
- [10] Seppälä, J., Posch, M., Johansson, M. & Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, Int J of LCA 11(6):403-416 Nov 2006 DOI:10.1065/lca2005.06.215
- [11] Posch, M., Seppälä, J., Hettelingh, J-P. & Johansson, M. (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, I J LCA 13(6):477-486. DOI:10.1007/s11367-008-0025-9
- [12] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009). ReCiPe 2008 A life cycle impact assessment method comprising harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1st Ed. EUTREND model.
- [13] CML–IA V4.1 LCA methodology, 2002, October 2012, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands.
- [14] Guinée et al., 2002, & van Oers et al., 2002 CML LCA methodology 2002a, CML, Netherlands.
- [15] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B. Oki, T. Worbe, S. & Pfister, S (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE) I J LCA. 23. 1-11. 10.1007/s11367-017-1333-8.

Bibliography

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

EN ISO 14024:2000, Environmental labels and declarations - Type I environmental labelling -Principles and procedures (ISO 14024:1999).

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006).

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework.

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance.

EN 16449, Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide.

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ISO 21931-1:2010, Sustainability in building construction - Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings.